PHYS4450 Solid State Physics  Problem Set 2 Due: 20 February 2013 (Wednesday)

All problem sets should be handed in not later than 5pm on the due date. Drop your assignment in the Boz
labelled PHY 4450 in SC 213 (Year I teaching laboratory,).

Important: You MUST attached a SIGNED declaration on academic honesty to every problem
set. Homework without a signed declaration form will NOT be graded. A form is attached at
the end of the Problem Set.

Please work out the steps of the calculations in detail.

2.0

2.1

Reading Assignment: For the frst part of the course on crystal structures, bonding, and structure
determination, read Kittel’s Chapters 1-3 and/or early sections of Chapter 3 in Christman’s book.
There is always a chapter (or sections) on bonding in standard SSP textbooks. The materials in such
chapters were covered in Quantum Physics I/II. You should read the relevant chapters/sections for a
review. Also, read the sections on Reciprocal Lattices and X-ray diffraction. Chapter 3 of the book
by Ibach (see book list and revised in University Library) gives a thorough and readable discussion on
"Diffraction from Periodic Structures” with an appendix on experimental techniques. We started the
second part on Lattice Vibrations. It is covered in Chapter 4 of Kittel’s and Christman’s books, but
our treatment will be more thorough. It will also be useful to review by yourself the statistical physics
of a collection of quantum oscillators. ‘

(This problem is a continuation of Problem 1.5 on the structure of graphene and similar to SQ5 and
SQ6. It is also meant to be educational and serves as a review on several basic concepts.) Refer to the
figure in Problem Set 1 and the figures in this Problem Set. Graphene is a two-dimensional honeycomb
array of carbon atoms forming (see figure). The nearest-neighboring separation is 1.424. (See SQ5
& SQ86.)

(a) From Problem 1.5, you should have known that the underlying lattice is the hexagonal lattice
given in a separate figure (see figure). Let & and § be two unit vectors in the z-direction and
y-direction on a 2D plane, respectively. In SQ8, the TA chose a set of primitive vectors. Here, to
unify the choice, I marked another set of two primitive vectors a; and ap on the attached figure
(which are chosen intentionally to be different from the solutions to SQ5 and SQ6). Write down
a; and ay in terms of the separation a (see figure) and the two unit vectors & and §j. Also, find
@ in units of A. This will be the direct lattice in this problem. We will go over various concepts
based: on this direct lattice.

(b) The vectors a; and ag defines a parallelogram, which is a primitive unit cell. Sketch this primitive
unit cell and find the area of the primitive unit cell. [Since we have a 2D system, we are talking
about area rather than volume.] '

(c) In handling 2D systems, it is convenient to introduce an additional or auxiliary a3 = £, which is a
unit vector perpendicular to the plane of the system. Using the formula in getting the “volume”
of a primitive unit cell in terms of a;, ag, and ag, find the “volume” of a primitive unit cell.
[Compare results with (b). You should keep track of the units, i.e., when you are asked about the
volume of the primitive cell, then it is a volume; but when you are asked about the area of the
2D primitive cell, then it is an area. That is to say, when you include a ag into the problem, be
very clear in your mind about what you are calculating.]

{d) Back to the direct lattice. Take any lattice point and construct the Wigner-Seitz cell. Check that
the area is that of a primitive unit cell.

(e) With aj, ag, and ag, construct the vectors by, by, and bz. Using by and by as primitive vectors,
dot out the reciprocal lattice on a SEPARATE page. Since there are only 5 possible lattice types
in 2D, the reciprocal lattice must also belong to one of these types. Identify the lattice type of
the reciprocal lattice. [Note: £ and § defined the & and y directions.]

(f) Using by and bs to form a parallelogram, this is a primitive cell of the reciprocal lattice. Find the
“area” of this primitive cell. How is this area related to the area of the primitive cell in the direct
lattice (result in (b))? [Note: Compare with general relation between the volumes of primitive
unit cells in direct space and reciprocal space. Recall that we are dealing with a 2D system.]
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Go back to the direct lattice. Sketch a set of parallel crystal planes (try some less trivial ones).
Identify the Miller’s indices (hk) or (hk0). [Why is the third index “0"7]

Go to the graph of the reciprocal lattice in part (f). Draw a reciprocal lattice vector G(hk) =
hbj + kb, for (hk) in part (h).

Just do this in private (don’t need to write down anything, but the TA can check this readily
from your graphs). Put the two graphs together and look at them through strong light, do you
see that the reciprocal lattice G(hk) is perpendicular to the set of planes you drew in part (h)?
Convince yourself that G(hk) is the shortest reciprocal lattice vector with this property and other
reciprocal lattice vectors nG(hk) with n being an integer (# 0) also carry the same property.

(Brillouin zones) Use the picture for the reciprocal lattice. Take a point, draw lines to the
neighboring points (don’t stop at the nearest neighbors, draw lines farther away from the point),
and drop perpendicular bisecting lines. It will then emerge an area in the reciprocal space (k-
space) that is closer to the chosen point than any other points in the reciprocal lattice. This
region is called the first Brillouin zome (1st BZ) of the direct lattice. Identify (e.g., use a color
pencil to highlight) the first Brillouin zone.

Justify the following statement: The first Brillouin zone of the direct lattice is the Wigner-Seitz
cell of the reciprocal lattice.

You may wonder why the region is called the “first” Brillouin zone, are there “second” and ” third”
Brillouin zones and so on? Now, look at your sketch again. There are patches of regions beyond
the 1st BZ that can be identified as “second nearest” to the chosen point. They are usually
disjoint patches. Together, they form the second Brillouin zone. They have several properties.
The areas of the patches ADD UP to the same area as the 1st BZ and thus a primitive unit cell
in the reciprocal space. More, one can translate the patches back into the region of the 1st BZ
by some reciprocal lattice vector G (see must be G!). From your picture, identify the second
Brillouin zone (coloring the patches) and indicate which G’s needed in translating the patches
back to the 1st BZ. Check also that the area of the 2nd BZ is the same as that of the 1st BZ.

Don’t need to do anything. Read the whole problem again and see if you follow all the steps and
all the relationships between the direct lattice and the reciprocal lattice? Keep in mind the 1st
BZ of graphene. We will need it in future discussions, e.g., in lattice vibrations and energy bands.
Keep a copy of this problem and your answer as an appendix to Chapter 1V.

2.2 Find a picture of a fcc lattice (using the conventional unit cell) and identify the (111)planes. Let a be
the cube edge of the conventional unit cell. There are lattice points on a (111) plane and thus there
is a certain concentration of lattice points on the plane (e.g., number of points per unit area). Next,
consider a simple cubic lattice with a cube edge @ and identify the (110) planes. Again, there are
lattice points on a (110) plane and there is a certain concentration of lattice points on the plane. If
the concentrations of lattice points in the two systems happen to be the same, find the ratio @/a.

2.3

Self-Study on cohesive energy II — Cohesive energy of ionic crystals. This is a continuation
of Problem 1.1, in which we studied the cohesive energy in molecular crystals where the relevant
interaction is the Van der Waals interaction. Here, we deal with JONIC crystals. This turns out to
be an interesting and not-so-easy problem numerically. The ideas in Problem 1.1 are still applicable.

(a)

To appreciate the “difficulty”, we start with a two-dimensional (2D) ionic crystal. Let there be
two types of ions, with +-e charge (cations) and -e charge (anions). Draw a lattice of this 2D
ionic crystal so that every cation has 4 nearest neighboring anions and every anion has 4 nearest
neighboring cations, and the (equilibrium) nearest neighbor separation is 5. [Optional (no bonus
of course!): How would you formally describe this crystal structure?]

There are actually two kinds of interactions here. One is the long range Coulomb interaction
between the ions, and another is a short-range (i.e., effective only when two ions are very close
to each other) repulsion that acts only between nearest neighboring ions. For the moment, let’s
consider ONLY the Coulomb interaction. From the crystal structure, write down the separations



between nearest neighbors, next nearest neighbors, next-next nearest neighbors, ... up to next-(5
times) nearest neighbors (i.e., altogether, 6 separations). Let u. be the coulomb energy PER ION.
Show that u, is given by:

1 e? 4 8
==. % (44— +2- = +othertwot ). 1
Ue =5 47F€0T0( +\/§+ \/§+0 er twoterms + ) (1)

One can work out as many terms as possible and sum them to convergence to get u..
The short-range repulsion can be represented by a term of the form A/r§2. Thus, the energy PER

ION is given by 4
4
U= Ue + 3, (2)
U]

where the factor 4 in the repulsive term comes from the four nearest neighbors of an ion. (Remark:
You have seen such +1/r™ repulsive part in Problem 1.1.]

{c) Now, consider the number in the brackets in Eq.(1). To illustrate the difficulty, list a table for

the sum. In the table, list the value inside the brackets if we retain only one term (the first term),
two terms, three terms, ... up to 6 terms.
Here is the point. Look at the running total of the sum. Do you see that the numbers are going
up and down, instead of having a clear trend of converging to some number. In fact, it does not
look like that it is a converging sum at all! This is the difficulty of handling IONIC crystals.
Series of this type are called Madelung Sums, after the German physicist Erwin Madelung who
studied the problem in 1918. The sum does converge! Important Point: Look at the sum.
The sum is a property of the crystal structure, as real-matérial parameters such as rp has been
taken out as the pre-factor. That is to say, the same “Madelung constant” works for materials
that take on the same crystal structure.

(d) Optional (with bonus point): Inspect how to write down more terms for the farther ions. Write
a computer program to sum up a thousand terms to a few thousand terms. For a thousand term
or so, you may get a number close to -1.6. [Note: This is not an accurate number. If you sum up
a few thousand terms, you will get a more accurate number.]

(e) For those who don’t do the optional part (d), let’s say the number converges to -1.6. Find an
expression for the equilibrium separation 75. And then obtain an expression for the cohesive
energy per ion v in the form of something times e2/ry. Remark: To turn it into cohesive energy
per mole U, argue that U = 2Nu, where N4 is the Avogadro number. [For example, in Kittel,
the cohesive energy of NaCl is quoted as 774 kJ mol™1.]

As a physics student, you should see the universality in achieving an equilibrium separation
between ions or atoms (or between nucleons in nucleus). We need a short-range repulsive part
and a long-range attractive part in the energy, combined they give a minimum in energy at some
equilibrium separation.

Remark: Possible interesting extension/not even optional— An interesting (but not easy) extension
is to consider an array of electric dipoles. In this case, one may similarly consider the potential
energy for a dipole moment due to the interactions with the other dipole moments in the periodic
array. It turns out that there are some non-trivial mathematical tricks. One way to do it is to use
what is called the Ewald sum (what is it?), after the same Ewald as in the Eward construction
related to X-ray diffraction. This is a nice short project. '

2.4 Self-study on cohesive energy III — Cohesive energy of NaCl. Next, we extend the study in
Problem 2.3 to three-dimensional jonic crystals. Take NaCl as our example and follow the ideas in
Problem 2.3. Find out the crystal structure. Let rg be the nearest neighbor separation (i.e., between
cation and anion).

(a) Identify the separations between nearest neighbors, next-nearest neighbors, next-next-nearest
neighbors, and next-next-next nearest neighbors (4 separations altogether). Show that the Coulomb
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energy PER ION is given by:
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and write down 4 terms in the brackets.

(b) Make a list of running total of the sum, by including one term, two terms, three terms, and four
terms. ’
Look at the numbers. Again, it is not sure at all that there is a trend to convergence! The
situation is actually worse than the 2D case. Even including a few thousand terms, there is only
some sign of convergence! Madelung showed that this number indeed converges. Note that the
number is specific to the crystal structure under consideration (but independent of the actual
materials forming the ions). You may find some Madelung constants for different structures on
Wikipedia.
For NaCl type structure, the sum turns out to give M = —1.748, which is called the Madelung
constant of the NaCl type structure.

(¢} Including a short-range repulsive term of an ion with its 6 nearest neighbors, the cohesive energy
per ion can be written as

6A
o

The last term is the “12”-term (repulsive term) in the 6-12 potential or the Van der Waals poten-
tial. Using the given Madelung constant, show that the equilibrium nearest neighbor separation

can be expressed as ,
1/11
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Hence, show that the cohesive energy PER ION is given by

—1.602¢?
U T e
8megry

(6)

(d) Solid state physics deals with real stuffs! The above result says that if we know 7y (e.g., from
experimental data), then we can estimate the cohesive energy per ion. For different ionic crystals
with the same structure, Eq.(6) works. Thus, different values of rp will give different u. )
Consider NaCl. Let’s estimate rp from the following data. The mass density of NaCl is 2165 kg
m~%. One mole of Na has a mass of 22.99 x10~2 kg, and one mole of Cl has a mass of 35.45
%1073 kg. Show that rg ~ 2.82 x 1071% m (i.e., Angstrom scale). [Hint: Find the mass of one
chemical formula unit of NaCl, and then find the volume occupied by one chemical formula unit
in terms of 79. Then you can get rg.] Hence, find u for NaCl in units of J/ion and eV per ion.

(e) Obtain U, the cohesive energy PER MOLE of NaCl. Compare your result with the numbers
774 kJ mol™" cited in books (e.g. in Kittel’s Chapter 3). [Remark for physics students: Try to
turn the 774 kJ mol~! into €V. Sounds strange you may think! Not quite — think about how
many eV when multiplied by N4 (Avogadro’s number) and turned the result to J would give 774
kJ mol~'? The answer is very familiar and the value is typical of ionic and covalent bonds in
molecular physics. Try it!]

Remark: Problems 1.1, 2.3, and 2.4 collectively complete the discussion on cohesive energy of
solids, c.f. Kittel’s Chapter 3. This is also related to the idea of bonding and binding energy of a
molecule discussed in your Quantum Physics courses.

2.5 Write down a proof that clearly show the Bragg condition follows from the Laue condition. [Hint:
Read class notes. The point here is that you should think it through carefully. The Bragg condition
carries d, 8, n and A\. The Laue condition carries s, s/, and G (and apparently no “n”). So, it is not
at all obvious that they are telling us the same thing!]



2.6 Normal modes in 1D Triatomic Chain. Read the early sections of Chapter VI on Lattice Vibra-
tions, in particular on 1D diatomic chain. Now generalize the treatment to a 1D chain of the form
W A-B-C-A-B-C-A-B-C..., where A, B, C refer to atoms with masses M4, Mg, and M., respectively.
The period is a (what does it mean?). Discuss the vibrational modes dispersion relations w(g). [You
may need to define the details of the problem, e.g., how many spring constants you want to introduce,
etc. Tt is like writing a section on this topic in a textbook.]

Important: You must attach a signed copy of the following declaration to your homework. You may also
download the form in the website listed below.

I declare that the assignment here submitted is original except for source material explicitly acknowl-
edged, and that the same or related material has not been previously submitted for another course. I also
acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the
disciplinary guidelines and procedures applicable to breaches of such policy and regulations, as contained in
the website http//www.cuhk.edu.hk/policy/academichonesty.

Signature Date
Name Student ID
Course code » Course title
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